Abstract

In this article, we present a Monte Carlo study of phase transition and coarsening dynamics in the nonconserved two-dimensional random-bond q-state clock model (RBCM) deriving from a pure clock model [Chatterjee etal., Phys. Rev. E 98, 032109 (2018)10.1103/PhysRevE.98.032109]. Akin to the pure clock model, RBCM also passes through two different phases when quenched from a disordered initial configuration representing at infinite temperature. Our investigation of the equilibrium phase transition affirms that both upper (T_{c}^{1}) and lower (T_{c}^{2}) phase transition temperatures decrease with bond randomness strength ε. Effect of ε on the nonequilibrium coarsening dynamics is investigated following independent rapid quenches in the quasi-long-range ordered (QLRO, T_{c}^{2}<T<T_{c}^{1}) regime and long-range ordered (LRO, T<T_{c}^{2}) regime at temperature T. We report that the dynamical scaling of the correlation function and structure factor is independent of ε and the presence of quenched disorder slows down domain coarsening. Coarsening dynamics in both LRO and QLRO regimes are further characterized by power-law growth with disorder-dependent exponents within our simulation timescales. The growth exponents in the LRO regime decrease from 0.5 in the pure case to 0.22 in the maximum disordered case, whereas the corresponding change in the QLRO regime happens from 0.45 to 0.38. We further explored the coarsening dynamics in the bond-diluted clock model and, in both the models, the effect of the disorder is more significant for the quench in the LRO regime compared to the QLRO regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.