Abstract
Understanding the nature of solid-liquid interfaces is important for many processes of technological interest, such as solidification, liquid-phase epitaxial growth, wetting, liquid-phase joining, crystal growth, and lubrication. Recent studies have reported on indirect evidence of density fluctuations at solid-liquid interfaces on the basis of x-ray scattering methods that have been complemented by atomistic simulations. We provide evidence for ordering of liquid atoms adjacent to an interface with a crystal, based on real-time high-temperature observations of alumina-aluminum solid-liquid interfaces at the atomic-length scale. In addition, crystal growth of alumina into liquid aluminum, facilitated by interfacial transport of oxygen from the microscope column, was observed in situ with the use of high-resolution transmission electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.