Abstract

Grazing-angle of incidence small-angle X-ray scattering (GISAXS) and high-resolution field emission scanning electron microscopy have been used to characterize the mesophase symmetry, orientation, and long-range order in PEO20-PPO70-PEO20 (Pluronic P123) templated mesoporous silica thin films on conducting gold substrates as a function of silica-to-ethylene oxide (Si/EO) block ratio and relative humidity (RH). The films are formed by dip-coating followed by evaporation-induced self-assembly under tightly controlled RH. The general evolution of the mesophase follows the trends that are expected based on shape factors due to swelling of the PEO block. However, changes in orientation of the nanostructure relative to the substrate and the degree of long-range order are found to depend on Si/EO ratio. These effects are likely due to the dynamics of evaporation and self-assembly. Generally, at Si/EO ratios lower than 3.29, the films contained regions where the nanostructure was not oriented relative to the plane of the substrate. However, for Si/EO ratios greater than 3.62, conditions were found where the nanostructure of the film was highly oriented relative to the plane of the substrate. This is true over the range of RH studied, independent of the nanostructure symmetry. For low Si/EO ratios at the highest RH levels, the films were composed of a mixture of spherical and cylindrical pores. At high Si/EO ratios and high RH levels, the films had a highly oriented R-3m nanostructure but displayed streaking perpendicular to the substrate in the Bragg spots on GISAXS patterns. This streaking is interpreted as faulting along planes parallel to the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.