Abstract

Suppose that V is a finite faithful irreducible G-module where G is a finite solvable group of odd order. We prove if the action is quasi-primitive, then either F(G) is abelian or G has at least 212 regular orbits on V. As an application, we prove that when V is a finite faithful completely reducible G-module for a solvable group G of odd order, then there exists v ∈ V such that C G (v) ⊆ F 2(G) (where F 2(G) is the 2nd ascending Fitting subgroup of G). We also generalize a result of Espuelas and Navarro. Let G be a group of odd order and let H be a Hall π-subgroup of G. Let V be a faithful G-module over a finite field of characteristic 2, then there exists v ∈ V such that C H (v) ⊆ O π(G).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.