Abstract
We perform a theoretical study of the effects of electronic correlations on the superconducting gap structure of multi-band superconductors. In particular, by comparing standard RPA-based spin-fluctuation mediated gap structures to those obtained within the FLEX formalism for an iron-based superconductor, we obtain directly the feedback effects from electron-electron interactions on the momentum-space gap structure. We show how self-energy effects can lead to an orbital inversion of the orbital-resolved spin susceptibility, and thereby invert the hierarchy of the most important orbitals channels for superconducting pairing. This effect has important consequences for the detailed gap variations on the Fermi surface. We expect such self-energy feedback on the pairing gap to be generally relevant for superconductivity in strongly correlated multi-orbital systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.