Abstract

AbstractIcy deposits surrounding Planum Boreum, Mars, contain crucial information for deciphering paleoclimate and past geologic processes at the martian north pole. One such deposit, Abalos Mensa, is an enigmatic wedge of material located near the ~ 1 km high Rupes Tenuis. Its unique location and lobate morphology have fostered formation hypotheses that assume either fluvial or aeolian erosion of a once‐larger ice deposit. The aeolian scenario posed previously requires impact shielding of ancient basal unit material to provide an erosional remnant which seeds later deposition, while the fluvial hypotheses invoke cryovolcanism beneath the younger north polar layered deposits (NPLD) and associated outflow to erode the adjacent chasmata. Here we combine newly available radar sounding data, high‐resolution imagery, digital elevation models, and atmospheric modeling to examine internal structure and infer both the mechanisms for, and timing of, Abalos Mensa formation. From this integrative approach, we conclude that Abalos Mensa formed as a distinct feature via atmospheric deposition following erosion of Rupes Tenuis and grew concurrently with the rest of Planum Boreum as the NPLD accumulated. The required processes are consistent with those observed today: no exotic phenomena (cryovolcanism, fluvial activity, or impact shielding) appear necessary to explain the formation of Abalos Mensa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.