Abstract

The recent discovery of a planetary transit in the star HD 209458, and the subsequent highly precise observation of the transit light curve with Hubble Space Telescope, is encouraging to search for any phenomena that might induce small changes in the light curve. Here we consider the effect of the quadrupole moment of the parent star and of a possible second planet perturbing the orbit of the transiting planet. Both of these cause a precession of the orbital plane and of the periastron of the planet, which result in a long-term variation of the duration and the period of the transits. For a transiting planet at 0.05 AU, either a quadrupole moment similar to that of the Sun or the gravitational tug from an Earth-like planet on an orbit of semimajor axis ~0.2 AU and a relative inclination near the optimal 45° would cause a transit duration time derivative of ~1 s yr-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.