Abstract

Abstract We present results from adaptive optics imaging of the T Tauri triple system obtained at the Keck and Gemini Observatories in 2015−2019. We fit the orbital motion of T Tau Sb relative to Sa and model the astrometric motion of their center of mass relative to T Tau N. Using the distance measured by Gaia, we derived dynamical masses of M ⊙ and M Sb = 0.43 ± 0.06 . The precision in the masses is expected to improve with continued observations that map the motion through a complete orbital period; this is particularly important as the system approaches periastron passage in 2023. Based on published properties and recent evolutionary tracks, we estimate a mass of ∼2 M ⊙ for T Tau N, suggesting that T Tau N is similar in mass to T Tau Sa. Narrowband infrared photometry shows that T Tau N remained relatively constant between late 2017 and early 2019 with an average value of K = 5.54 ± 0.07 mag. Using T Tau N to calibrate relative flux measurements since 2015, we found that T Tau Sa varied dramatically between 7.0 and 8.8 mag in the K band over timescales of a few months, while T Tau Sb faded steadily from 8.5 to 11.1 mag in the K band. Over the 27 yr orbital period of the T Tau S binary, both components have shown 3–4 mag of variability in the K band, relative to T Tau N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.