Abstract

We model long-term variations in the scintillation of binary pulsar PSR J1603−7202, observed by the 64 m Parkes radio telescope (Murriyang) between 2004 and 2016. We find that the time variation in the scintillation arc curvature is well-modeled by scattering from an anisotropic thin screen of plasma between the Earth and the pulsar. Using our scintillation model, we measure the inclination angle and longitude of ascending node of the orbit, yielding a significant improvement over the constraints from pulsar timing. From our measurement of the inclination angle, we place a lower bound on the mass of J1603−7202's companion of ≳0.5 M ⊙ assuming a pulsar mass of ≳1.2 M ⊙. We find that the scintillation arcs are most pronounced when the electron column density along the line of sight is increased, and that arcs are present during a known extreme scattering event. We measure the distance to the interstellar plasma and its velocity, and we discuss some structures seen in individual scintillation arcs within the context of our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.