Abstract

Possibilities for the reconstruction of orbital floor fractures have been extensive for years with regard to materials, methods and differential indications and are inconsistent worldwide. With the spread of CAD/CAM techniques, new and mostly time-consuming possibilities for orbital floor reconstructions have been added. The simple and time-efficient CT-to-patient-specific implant workflow presented here shows that a "form-box" can be created from a patient's computer tomography data set using planning software and a 3D printer. The box is then used to form a patient-specific implant for orbital floor reconstruction: here polydioxanone foil was used, for which stable thermoplastic deformability has been demonstrated for 3D reconstructions. Patient-specific thermoplastic shaping of polydioxanone is feasible in a theoretical clinical setting, though its thermoplastic shaping is not yet certified for clinical use. However, a flexible adaptation of the "form-box" design to other materials is possible by setting a single planning parameter. The simple structure of the box and its straightforward planning/fabrication process with widely available low-cost materials offer the possibility that a surgeon without a 3D specialist can produce a "form-box" for next day surgery if needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.