Abstract

In this report, we described induction of HIV envelope (env)-specific systemic and mucosal immune responses by oral vaccination of BALB/c mice with env-encoded plasmid DNA encapsulated in poly(dl-lactide-co-glycolide) (PLG) microparticles. We demonstrated that intragastric administration of the encapsulated plasmid DNA resulted in transduced expression of the env glycoprotein in the intestinal epithelium. Mice immunized orally exhibited env-specific type 1 and cytotoxic T lymphocyte (CTL) responses in spleen and the inductive (Peyer's patches) and effector (lamina propria) mucosal tissues of gut. Oral administration of PLG-encapsulated plasmid DNA encoding gp160 also induced env-specific serum antibodies, and an increased level of IgA directed to gp160 was detected in fecal washes of the immunized mice. In contrast, intramuscular (i.m.) administration of naked or PLG-encapsulated DNA vaccine induced only systemic cellular and humoral responses to the env glycoprotein. Using an HIV env-expressing recombinant vaccinia viral intrarectal murine challenge system, we observed higher resistance to mucosal viral transmission in mice immunized orally than in animals injected i.m. with PLG-encapsulated plasmid DNA encoding gp160. Results of these studies demonstrate the feasibility of using orally delivered PLG microparticles containing plasmid DNA-encoded HIV gp160 for induction of env-specific systemic and mucosal immune responses and protection against recombinant HIV env vaccinia virus challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.