Abstract

Combining plasmonic and photonic elements, optoplasmonic hybrid structure exhibits excellent optical properties beyond conventional plasmonic or photonic structures. In this work, the optoplasmonic film consists of SiO2 microsphere and Au film without any nanostructures is investigated. With the help of a microsphere, the intensity of surface enhanced Raman spectroscopy (SERS) on Au film is highly enhanced (~1000 times) compared to bare Au film. The simulated electromagnetic field points out the enhancement caused by the optical lens effect of SiO2 microsphere that high light intensity is generated under the microsphere to excite surface plasmon on Au film. Furthermore, our data demonstrates the microsphere lens enhancement is greatly influenced by the size of the SiO2 microsphere and wavelength of incident light. This interesting film with a simple configuration could overcome the challenges in the fabrication and store process induced by nanostructures, which play an important role in SERS application. Our work not only enlarges the knowledge of the optoplasmonic hybrid structure, but also exhibits excellent application prospective in light harvest field e.g. enhanced spectrum, photocatalysis, optothermal effect, and hot electron generation, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.