Abstract

In this paper, we propose an optomechanical scheme for generating mechanical squeezing over the 3 dB limit, with the mechanical mirror being driven by a strong and linear harmonic force. In contrast to parametric mechanical driving, the linearly driven force shakes the mechanical mirror periodically oscillating at twice the mechanical eigenfrequency with large amplitude, where the mechanical mirror can be dissipatively stabilized by the engineered cavity reservoir to a dynamical squeezed steady state with a maximum degree of squeezing over 8 dB. The mechanical squeezing of more than 3 dB can be achieved even for a mechanical thermal temperature larger than 100 mK. The scheme can be implemented in a cascaded optomechanical setup, with potential applications in engineering continuous variable entanglement and quantum sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.