Abstract

We consider both the single-user and the multiuser power allocation problems in MIMO systems, where the receiver side has the perfect channel state information (CSI), and the transmitter side has partial CSI, which is in the form of covariance feedback. In a single-user MIMO system, we consider an iterative algorithm that solves for the eigenvalues of the optimum transmit covariance matrix that maximizes the rate. The algorithm is based on enforcing the Karush-Kuhn-Tucker (KKT) optimality conditions of the optimization problem at each iteration. We prove that this algorithm converges to the unique global optimum power allocation when initiated at an arbitrary point. We, then, consider the multi-user generalization of the problem, which is to find the eigenvalues of the optimum transmit covariance matrices of all users that maximize the sum rate of the MIMO multiple access channel (MIMO-MAC). For this problem, we propose an algorithm that finds the unique optimum power allocation policies of all users. At a given iteration, the multi-user algorithm updates the power allocation of one user, given the power allocations of the rest of the users, and iterates over all users in a round-robin fashion. Finally, we make several suggestions that significantly improve the convergence rate of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.