Abstract

Differential absorption lidar (DIAL) is a well-established technology for estimating the concentration and its path integral CL of vapor materials using two closely spaced wavelengths. The recent development of frequency-agile lasers (FAL's) with as many as 60 wavelengths that can be rapidly scanned motivates the need for detection and estimation algorithms that are optimal for lidar employing these new sources. I derive detection and multimaterial CL estimation algorithms for FAL applications using the likelihood ratio test methodology of multivariate statistical inference theory. Three model sets of assumptions are considered with regard to the spectral properties of the backscatter from either topographic or aerosol targets. The calculations are illustrated through both simulated and actual lidar data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.