Abstract

AbstractNonflammability of the thermoplasticized crosslinked polyethylene (PE)/polyolefin elastomer (POE)/metal hydroxide flame retardant/compatibilizer composites were investigated. The thermoplasticized crosslinked PE was decrosslinked from the crosslinked high‐density PE under the supercritical methanol condition. Two types of metal hydroxides: aluminum hydroxide (AH) and magnesium hydroxide (MH), and a low‐density polyethylene‐g‐maleic anhydride (LM) were used as flame retardants and a compatibilizer, respectively. Nonflammability of both PE/POE/AH/LM and PE/POE/MH/LM composites was enhanced with metal hydroxide flame retardant concentration. PE/POE/MH/LM composites had better nonflammability than PE/POE/AH/LM composites at the same flame retardant concentration. Interestingly, nonflammability of the composites was also strongly influenced by the compatibilizer concentration. At low compatibilizer concentration, the nonflammability of the PE/POE/MH/LM composites was improved with the compatibilizer concentration. In contrast, at high compatibilizer concentration, the nonflammability of the PE/POE/MH/LM composites was deteriorated with the compatibilizer concentration. This demonstrates that optimum concentration of the compatibilizer can help to enhance the efficiency of the flame retardants in the development of the nonflammable polyolefin for the wire and cable industry. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.