Abstract

This paper presents a quantitative approach to estimating the carbon dioxide (CO2) emission reduction by optimizing water storage operations in water delivery systems. This approach uses hydraulic models of water delivery systems to perform pumping energy optimization analyses with equalization water storage and identifies marginal electrical generation types based on locational marginal price (LMP) data available in open electrical markets. The marginal pollutant emission reduction has been evaluated based on pumping energy optimization, hourly marginal generation types and pollutant emission rates for different types of generation. An example is presented that applied the proposed approach to a large water delivery system in the Metro Detroit area, Michigan. The analysis results showed a daily CO2 emission reduction of 11.7tonnes, which accounted for approximately 3% of the total CO2 emission produced by the electricity consumption for pumping water under the maximum day demand condition of 2012.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.