Abstract

Metal halide perovskite nanocrystal (PNC) light-emitting devices (LEDs) are promising in the future ultra-high-definition display applications due to their tunable bandgap and high color purity. Balanced carrier injection is indispensable for realizing highly efficient LEDs. Herein, cobalt (Co) was doped into ZnO to modulate the electron mobility of a pristine electron transport layer (ETL) and to inhibit exciton quenching at the ZnO/EML interface due to the passivation of oxygen vacancies and the reduction of electron concentration resulting from the trapping of electrons by the Co2+-induced deep impurity level. Also, the bandgap was widened due to the size confinement effect. All of those were beneficial to achieve a balanced charge injection during the operating process. Consequently, the maximum luminance increased from 867 cd m-2 for ZnO LEDs to 1858 cd m-2 for Co-doped ZnO LEDs, and there was a 70% increase of external quantum efficiency (EQE). By further inserting a polyethylenimine (PEI) layer in the Co-doped ZnO LEDs, the EQE reached 13.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.