Abstract
In this paper we examine the N-photon absorption properties of maximally path-entangled number states (N00N states). We consider two cases. The first involves the N-photon absorption properties of the ideal N00N state, one that does not include spectral information. We study how the N-photon absorption probability of this state scales with N, confirming results presented by others in a previous paper by a different method. We compare this to the absorption probability of various other states. The second case is that of two-photon absorption for an N=2 N00N state generated from a type-II spontaneous down-conversion event. In this situation we find that the absorption probability is both better than analogous coherent light (due to frequency entanglement) and highly dependent on the optical setup. We show that the poor production rates of quantum states of light may be partially mitigated by adjusting the spectral parameters to improve their two-photon absorption rates. This work has application to quantum imaging, particularly quantum lithography, where the N-photon absorbing process in the lithographic resist must be optimized for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.