Abstract

AbstractOver the past few decades, significant research efforts have been devoted to the development of tools and techniques to improve the operational effectiveness of multireservoir systems. One of those efforts focuses on the incorporation of relevant hydrologic information into reservoir operation models. This effort is particularly relevant in regions characterized by low‐frequency climate signals, where time series of river discharges exhibit regime‐like behavior. Failure to properly capture such regime‐like behavior yields suboptimal operating policies, especially in systems characterized by large storage capacity such as large multireservoir systems. Hidden Markov Modeling is a class of hydrological models that can accommodate both overdispersion and serial dependence in time series, two essential hydrological properties that must be captured when modeling a system where the climate is switching between different states (e.g., dry, normal, and wet). In terms of reservoir operation, Stochastic Dual Dynamic Programming (SDDP) is one of the few optimization techniques that can accommodate both system and hydrologic complexity, that is, a large number of reservoirs and diverse hydrologic information. However, current SDDP formulations are unable to capture the long‐term persistence of the streamflow process found in some regions. In this paper, we present an extension of the SDDP algorithm that can handle the long‐term persistence and provide reservoir operating policies that explicitly capture regime shifts. Using the Senegal River Basin as a case study, we illustrate the potential gain associated with reservoir operating policies tailored to climate states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.