Abstract

AbstractA NASICON‐type Mn/F dual‐doping Na4Fe3(PO4)2P2O7 cathode material is successfully synthesized via a spray drying method. A medium‐spin of Fe is measured by DFT calculation, X‐ray absorption near edge structure (XANES), temperature‐dependent magnetization susceptibility (M−T) measurement, and electron paramagnetic resonance (EPR) tests. It indicates that the eg orbital occupation of Fe2+ can be finely regulated, thus optimizing the bond strength between the oxidation and reduction processes. Furthermore, from UV−vis DRS and four‐point probe conductivity measurements, it can be seen that, after adjusting the electron spin states, the band gap of the material has decreased from 1.01 to 0.80 eV, and the electronic conductivity has increased from 8.5 to 24.4 µS cm−1, thereby leading to competitive electrochemical performance. The as‐optimized Na4Fe3(PO4)2P2O7 displays both excellent rate performance (121.0 and 104.9 mAh g−1 at 0.1 C and 5 C, respectively) and outstanding cycling stability (88.5% capacity retention after 1000 cycles at 1 C). The results indicate that this low‐cost Mn/F dual‐doping Na4Fe3(PO4)2P2O7 cathode can be a competitive candidate material for sodium‐ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.