Abstract

Out-of-hospital cardiac arrest is a significant public health issue, and treatment, namely, cardiopulmonary resuscitation and defibrillation, is very time sensitive. Public access defibrillation programs, which deploy automated external defibrillators (AEDs) for bystander use in an emergency, reduce the time to defibrillation and improve survival rates. In this paper, we develop models to guide the deployment of public AEDs. Our models generalize existing location models and incorporate differences in bystander behavior. We formulate three mixed integer nonlinear models and derive equivalent integer linear reformulations or easily computable bounds. We use kernel density estimation to derive a spatial probability distribution of cardiac arrests that is used for optimization and model evaluation. Using data from Toronto, Canada, we show that optimizing AED deployment outperforms the existing approach by 40% in coverage, and substantial gains can be achieved through relocating existing AEDs. Our results suggest that improvements in survival and cost-effectiveness are possible with optimization. This paper was accepted by Dimitris Bertsimas, optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.