Abstract

The ability to monitor the inspired and expired concentrations of volatile anesthetic gases in real time makes these drugs implicitly targetable. However, the end-tidal concentration only represents the concentration within the brain and the vessel rich group (VRG) at steady state, and very poorly approximates the VRG concentration during common dynamic situations such as initial uptake and emergence. How should the vaporization of anesthetic gases be controlled in order to optimally target VRG concentration in clinical practice? Using a generally accepted pharmacokinetic model of uptake and redistribution, a transfer function from the vaporizer setting to the VRG is established and transformed to the time domain. Targeted actuation of the vaporizer in a time-optimal manner is produced by a variable structure, sliding mode controller. Direct mathematical application of the controller produces rapid cycling at the limits of the vaporizer, further prolonged by low fresh gas flows. This phenomenon, known as "chattering", is unsuitable for operating real equipment. Using a simple and clinically intuitive modification to the targeting algorithm, a variable low-pass boundary layer is applied to the actuation, smoothing discontinuities in the control law and practically eliminating chatter without prolonging the time taken to reach the VRG target concentration by any clinically significant degree. A model is derived for optimum VRG-targeted control of anesthetic vaporizers. An alternate and further application is described, in which deliberate perturbation of the vaporization permits non-invasive estimation of parameters such as cardiac output that are otherwise difficult to measure intra-operatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.