Abstract

Tire-derived aggregate concrete (TDAC), or rubberized concrete, is gaining ground as an eco-friendly option in civil engineering. By substituting traditional coarse aggregates with recycled rubber tires, TDAC offers a greener choice with excellent energy absorption capabilities. This leads to robust structures and reduced upkeep expenses. Nonetheless, TDAC’s lower strength than regular concrete requires a delicate balance between energy absorption and strength. This study investigates two enhancements to TDAC performance: (a) the impact of sodium hydroxide (NaOH) solution pretreatment and SikaLatex bonding agent addition on TDAC’s compressive strength, and (b) the use of varying water–cement ratios and superplasticizer to enhance TDAC’s mechanical properties. This study involves concrete cylinder compression tests and the creation of strength estimation equations. Results show that NaOH-treated tire-derived aggregate (TDA) boosts workability, increasing slump by 4.45 cm (1.75 in), yet does not significantly enhance compressive strength, causing a 34% reduction. Conversely, combining NaOH pretreatment with Sikalatex bonding agent enhances workability by 28% and boosts compressive strength by 21% at the same water-cement ratio. To optimize performance, it is advised to employ modified TDA concrete with a water–cement ratio under 0.34 and superplasticizer. These findings highlight the potential of modified TDA concrete in sustainable and seismic-resistant designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.