Abstract
The CRISPR-Cas9 system is a revolutionary tool in genetic engineering, offering unprecedented precision and efficiency in genome editing. Cas9, an enzyme derived from bacteria, is guided by RNA to edit DNA sequences within cells precisely. However, while CRISPR-Cas9 presents notable benefits and encouraging outcomes as a molecular tool and a potential therapeutic agent, the process of producing and purifying recombinant Cas9 protein remains a formidable hurdle. In this study, we systematically investigated the expression of recombinant SpCas9-His in four distinct Escherichia coli (E. coli) strains (Rosetta2, BL21(DE3), BL21(DE3)-pLysS, and BL21(DE3)-Star). Through optimization of culture conditions, including temperature and post-induction time, the BL21(DE3)-pLysS strain demonstrated efficient SpCas9 protein expression. This study also presents a detailed protocol for the purification of recombinant SpCas9, along with detailed troubleshooting tips. Results indicate successful SpCas9 protein expression using E. coli BL21(DE3)-pLysS at 0.5 mM IPTG concentration. Furthermore, the findings suggest potential avenues for further enhancements, paving the way for large-scale Cas9 production. This research contributes valuable insights into optimizing E. coli strains and culture conditions for enhanced Cas9 expression, offering a step forward in the development of efficient genome editing tools and therapeutic proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.