Abstract

For in vitro liver replacement devices, such as packed bed bioreactors, to maintain the essential functions of the liver, they must at least successfully support hepatocytes, the parenchymal cell of the liver. In vivo, the liver is a major consumer of oxygen. Hence it is unsurprising that the limited transport distance of oxygen (O(2)) governs the dimensions of the cellular space of engineered devices. Because cellular space capacity directly affects the device's performance, O(2) transport is a critical issue in the scale up of bioreactor designs. In the current investigation, the microporosity of the extracellular matrix (ECM) has been modified to further improve O(2) transport in packed bed devices beyond that previously reported in the literature. These improvements to the O(2) enhancement technique enabled O(2) transport distances of 481.7 +/- 12.5 microm to be achieved under acellular conditions; and distances of 418.1 +/- 6.0 microm to be attained in the presence of 1 million hepatocytes. Both values are significantly greater than the 170 microm baseline attained when 10(6) hepatocytes are packed within normal non-enhanced ECM gels. The study's results also illustrate that the O(2) enhancement technique has the added benefit of preventing regions of severe hypoxia and hyperoxia from developing within the cellular space. As such, enhanced ECM gels enable packed hepatocytes to maintain better hepatocellular metabolic status than is possible with normal non-enhanced gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.