Abstract

Neural electrodes suffer from an undesired incline in impedance when in permanent contact with human tissue. Nanostructures, induced by electrophoretic deposition (EPD) of ligand-free laser-generated nanoparticles (NPs) on the electrodes are known to stabilize impedance in vivo. Hence, Pt surfaces were systematically EPD-coated with Pt NPs and evaluated for impedance as well as surface coverage, contact angle, electrochemically active surface area (ECSA) and surface oxidation. The aim was to establish a systematic correlation between EPD process parameters and physical surface properties. The findings clearly reveal a linear decrease in impedance with increasing surface coverage, which goes along with a proportional reduction of the contact angle and an increase in ECSA and surface oxidation. EPD process parameters, prone to yield surface coatings with low impedance, are long deposition times (40-60 min), while high colloid concentrations (>250 μg mL-1 ) and electric field strengths (>25 V cm-1 ) should be avoided due to detrimental NP assemblage effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.