Abstract
The performance of immunosensors is highly dependent on the amount of immobilized antibodies and their remaining antigen binding capacity. In this work, a method for immobilization of antibodies on a two-dimensional carboxyl surface has been optimized using quartz crystal microbalance biosensors. We show that successful immobilization is highly dependent on surface p K a, antibody p I, and pH of immobilization buffer. By the use of EDC/sulfo-NHS (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/ N-hydroxysulfosuccinimide) activation reagents, the effect of the intrinsic surface p K a is avoided and immobilization at very low pH is therefore possible, and this is important for immobilization of acidic proteins. Antigen binding capacity as a function of immobilization pH was studied. In most cases, the antigen binding capacity followed the immobilization response. However, the antigen-to-antibody binding ratio differed between the antibodies investigated, and for one of the antibodies the antigen binding capacity was significantly lower than expected from immobilization in a certain pH range. Tests with anti-Fc and anti-Fab 2 antibodies on different antibody surfaces indicated that the orientation of the antibodies on the surface had a profound effect on the antigen binding capacity of the immobilized antibodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.