Abstract

The Langmuir–Blodgett technique, in which a layer of nanoparticles is spread at the water/air interface and further transferred onto a solid support, is a versatile approach for the preparation of SERS substrates with a controllable arrangement of hotspots. In a previous work, we demonstrated that fine-tuning the lateral packing and subsequent seed growth of 10 nm gold nanoparticles led to a quasi-resonant enhanced in the SERS signal of a test analyte. Here, we explore further enhancements by modifying the size and shape of the spread gold nanoparticles in order to take advantage of the inherent interparticle repulsion mechanisms present at the interface. We show that the size of the used nanoparticles is also a determinant factor, which cannot be compensated by the subsequent electroless growth. We also show that, although the seeded growth leads to rough hotspots, the sensitivity can be optimized by self-assembling urchin-shaped nanoparticles, with a roughness that is fine-tuned a priori. Our results suggest an intriguing correlation between surface homogeneity and SERS signal enhancement, indicating that regular substrates will have the optimal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.