Abstract

Fluorescence recovery after photobleaching (FRAP) has been widely used to measure fluid flow and diffusion in gels and tissues. It has not been widely used in detection of tissue anisotropy. This may be due to a lack of applicable theory, or due to inherent limitations of the method. We discuss theoretical aspects of the relationship between anisotropy of tissue structure and anisotropy of diffusion coefficients, with special regard to the size of the tracer molecule used. We derive a semi-mechanistic formula relating the fiber volume fraction and ratio of fiber and tracer molecule diameters to the expected anisotropy of the diffusion coefficients. This formula and others are tested on simulated random walks through random simulated and natural media. We determine bounds on the applicability of FRAP for detection of tissue anisotropy, and suggest minimum tracer sizes for detection of anisotropy in tissues of different composition (fiber volume fraction and fiber diameter). We find that it will be easier to detect anisotropy in monodisperse materials than in polydisperse materials. To detect mild anisotropy in a tissue, such as cartilage, which has a low fiber fraction would require a tracer molecule so large that it would be difficult to deliver to the tissue. We conclude that FRAP can be used to detect tissue anisotropy when the tracer molecule is sufficiently large relative to the fiber diameter, volume fraction, and degree of polydispersivity, and when the anisotropy is sufficiently pronounced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.