Abstract
Optimizing data pipeline performance in modern GPU architectures is critical for achieving high computational throughput and efficient resource utilization in data-intensive applications. With the rise of deep learning, scientific simulations, and real-time analytics, GPUs have become integral in accelerating data processing tasks. However, ensuring optimal performance involves addressing several challenges, such as memory bandwidth limitations, data transfer bottlenecks between CPU and GPU, and efficient parallel execution of workloads. This research explores techniques for improving data pipeline performance by focusing on memory management, load balancing, and task scheduling. One key strategy is optimizing data movement through techniques like memory coalescing, which minimizes access latency, and overlapping data transfers with computation. Furthermore, leveraging the architectural advances in modern GPUs, such as unified memory and NVLink, can significantly reduce data transfer overhead. Task parallelism and efficient workload distribution across multiple GPU cores also play a crucial role in enhancing pipeline throughput. Additionally, the study highlights the importance of tuning GPU kernels and optimizing data preprocessing steps to ensure minimal latency and maximum throughput. By adopting advanced profiling tools and performance monitoring techniques, bottlenecks can be identified, and pipeline optimization strategies can be fine-tuned. The findings presented provide a comprehensive approach for designing and optimizing data pipelines, leading to significant performance improvements in GPU-based systems, ultimately driving the next generation of high-performance computing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research Publication and Seminar
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.