Abstract

In order to solve the technical bottleneck that the biomass yield and lipid accumulation cannot be increased simultaneously during microalgae growth, a heterotrophic-assisted photoautotrophic biofilm (HAPB) growth mode of Chlorella vulgaris was constructed. The light penetration capability of the microalgae biofilm formed through heterotrophic-assisted photoautotrophic growth was 64% stronger than that formed by photoautotrophic growth. Due to the different demands of autotrophic and heterotrophic growth of microalgae, the nutrient environment and growth conditions were optimized to fully utilize the advantages and potentials of the HAPB culture model. An optimized molar ratio of total inorganic carbon (CO2) to total organic carbon (glucose) (20:1) and a molar ratio of total carbon to total nitrogen (72:1) were obtained. The maximum specific growth rate of Chlorella vulgaris increased by 78% compared to that before optimization. Meanwhile, the lipid content and yield increased by 120% and 147%, respectively, up to 47.53% and 41.95 g m−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.