Abstract
Brownian escape is key to a wealth of physico-chemical processes, including polymer folding and information storage. The frequency of thermally activated energy barrier crossings is assumed to generally decrease exponentially with increasing barrier height. Here, we show experimentally that higher, fine-tuned barrier profiles result in significantly enhanced escape rates, in breach of the intuition relying on the above scaling law, and address in theory the corresponding conditions for maximum speed-up. Importantly, our barriers end on the same energy on which they start. For overdamped dynamics, the achievable boost of escape rates is, in principle, unbounded so that the barrier optimization has to be regularized. We derive optimal profiles under 2 different regularizations and uncover the efficiency of N-shaped barriers. We then demonstrate the viability of such a potential in automated microfluidic Brownian dynamics experiments using holographic optical tweezers and achieve a doubling of escape rates compared to unhindered Brownian motion. Finally, we show that this escape rate boost extends into the low-friction inertial regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.