Abstract

Optimizing a portfolio of mean-reverting assets under transaction costs and a finite horizon is severely constrained by the curse of high dimensionality. To overcome the exponential barrier, we develop an efficient, scalable algorithm by employing a feedforward neural network. A novel concept is to apply HJB equations as an advanced start for the neural network. Empirical tests with several practical examples, including a portfolio of 48 correlated pair trades over 50 time steps, show the advantages of the approach in a high-dimensional setting. We conjecture that other financial optimization problems are amenable to similar approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.