Abstract

We consider a quasi-two-dimensional network connection growth model that minimizes the wiring cost while maximizing the network connections, but at the same time edge crossings are penalized or forbidden. This model is mapped to a dilute antiferromagnetic Ising spin system with frustrations. We obtain analytic results for the order-parameter or mean degree of the optimized network using mean-field theories. The cost landscape is analyzed in detail showing complex structures due to frustration as the crossing penalty increases. For the case of strictly no edge crossing is allowed, the mean-field equations lead to a new algorithm that can effectively find the (near) optimal solution even for this strongly frustrated system. All these results are also verified by Monte Carlo simulations and numerical solution of the mean-field equations. Possible applications and relation to the planar triangulation problem is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.