Abstract

AbstractDespite several decades of research on biomedical implant materials, the identification of predictive and robust in vitro characteristics of cell support ability and viabilities—as indicators of biocompatibility and future implant‐tissue integration—remain elusive. This study addresses the phenomenology of cell–implant interfaces based on experimental, theoretical, and numerical analysis of cell response to functionalized bioceramic coatings of commercial titanium implants, cp‐Ti. A variable spectrum of coatings having differing surface wettabilities, with optimized solid tension values, is obtained. Measured values are modeled and correlated to cell support ability and viabilities. The contributions of different surface aspects to cell viability are decoupled, resulting in the identification of the polar component of the surface free energy as a significant and major cell–substrate effector. Furthermore, results of this study and the suggested model establish the thermodynamic interfacial free energy as an omnipotent measure that can be fully correlated to the morphology of an individual cell under numerical simulation matching empirical observations. Collectively, the 3D model reported herein can offer a new generic theoretical framework, using implementable mathematical simulation, toward the objective of rational biomaterial design that can improve next‐generation metal and ceramic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.