Abstract

Traditional screening approaches identify students who might be at risk for academic problems based on how they perform on a single screening measure. However, using multiple screening measures may improve accuracy when identifying at-risk students. The advent of machine learning algorithms has allowed researchers to consider using advanced predictive models to identify at-risk students. The purpose of this study is to investigate if machine learning algorithms can strengthen the accuracy of predictions made from progress monitoring data to classify students as at risk for low mathematics performance. This study used a sample of first-grade students who completed a series of computerized formative assessments (Star Math, Star Reading, and Star Early Literacy) during the 2016–2017 (n = 45,478) and 2017–2018 (n = 45,501) school years. Predictive models using two machine learning algorithms (i.e., Random Forest and LogitBoost) were constructed to identify students at risk for low mathematics performance. The classification results were evaluated using evaluation metrics of accuracy, sensitivity, specificity, F1, and Matthews correlation coefficient. Across the five metrics, a multi-measure screening procedure involving mathematics, reading, and early literacy scores generally outperformed single-measure approaches relying solely on mathematics scores. These findings suggest that educators may be able to use a cluster of measures administered once at the beginning of the school year to screen their first grade for at-risk math performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.