Abstract

Understanding physical and chemical processes at an organismal scale is a fundamental goal in biology. While science is adept at explaining biological phenomena at both molecular and cellular levels, understanding how these processes translate to organismal functions remains a challenging problem. This issue is particularly significant for the nervous system where cell signaling and synaptic activities function in the context of broad neural networks. Recent progress in tissue clearing technologies lessens the barriers that previously prevented the study of large tissue samples while maintaining molecular and cellular resolution. While these new methods open vast opportunities and exciting new questions, the logistics of analyzing cellular processes in intact tissue have to be carefully considered. In this protocol, we outline a procedure to rapidly image intact brain tissue up to thousands of cubic millimeters. This experimental pipeline involves three steps: tissue clearing, tissue imaging, and data analysis. In an attempt to streamline the process for researchers entering this field, we address important considerations for each of these stages and describe an integrated solution to image intact biological tissues. Hopefully, this optimized protocol will lower the barrier of implementing high-resolution tissue imaging and facilitate the investigations of mesoscale questions at molecular and cellular resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.