Abstract
Single electron qubits are attractive for quantum information processing because they offer, for example, the possibility of extremely long coherence times. For scaling up to a large number of coupled qubits, an array of planar Penning traps is a much more promising option than the cylindrical Penning traps within which one-quantum transitions have been observed. This report summarizes optimized trap configurations, discussed at length in Goldman and Gabrielse (Phys Rev A 81:052335, 2010), which promise to make it possible to realize one-electron qubits in a scalable configuration for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.