Abstract

AbstractHere, an optimized method for energy‐efficient and highly reliable multibit operation in a Au/Al2O3/HfO2/TiN resistive switching (RS) device is investigated. A thin Al2O3 layer inserted between the top electrode and the HfO2 RS layer in a capacitor‐like RS device plays the role of an electrical resistor and modulates the external bias‐dependent resistance variation behavior of the RS device. Compared to the case where a single HfO2 layer is used, the device with a Al2O3/HfO2 stacked layer shows slow and nonvolatile resistance state variation with a stepwise increase of the applied voltage, which can significantly reduce the occurrence frequency of the abnormal cases during the incremental‐step‐pulse‐programming (ISPP) and error‐check‐and‐correction (ECC) processes. This phenomenon reduces the number of ISPP/ECC sequences, which is advantageous for achieving energy‐efficient programming in the multibit operation of an RS device. To clarify the role of the Al2O3 thin film layer, a comparative study is performed with an Au/HfO2/TiN stacked device and a serially connected external load resistor. The observed behavior is consistent with that of the device with an Al2O3 layer. This study demonstrates that the simple insertion of an insulating layer in an RS device can facilitate reliable and energy‐efficient multibit operation for future nonvolatile memory applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.