Abstract
Staphylococcus aureus small-colony variants (SCVs) emerge frequently during chronic infections and are often associated with worse disease outcomes. There are no standardized methods for SCV antibiotic susceptibility testing (AST) due to poor growth and reversion to normal-colony (NC) phenotypes on standard media. We sought to identify reproducible methods for AST of S. aureus SCVs and to determine whether SCV susceptibilities can be predicted on the basis of treatment history, SCV biochemical type (auxotrophy), or the susceptibilities of isogenic NC coisolates. We tested the growth and stability of SCV isolates on 11 agar media, selecting for AST 2 media that yielded optimal SCV growth and the lowest rates of reversion to NC phenotypes. We then performed disk diffusion AST on 86 S. aureus SCVs and 28 isogenic NCs and Etest for a subset of 26 SCVs and 24 isogenic NCs. Growth and reversion were optimal on brain heart infusion agar and Mueller-Hinton agar supplemented with compounds for which most clinical SCVs are auxotrophic: hemin, menadione, and thymidine. SCVs were typically nonsusceptible to either trimethoprim-sulfamethoxazole or aminoglycosides, in accordance with the auxotrophy type. In contrast, SCVs were variably nonsusceptible to fluoroquinolones, macrolides, lincosamides, fusidic acid, and rifampin; mecA-positive SCVs were invariably resistant to cefoxitin. All isolates (both SCVs and NCs) were susceptible to quinupristin-dalfopristin, vancomycin, minocycline, linezolid, chloramphenicol, and tigecycline. Analysis of SCV auxotrophy type, isogenic NC antibiograms, and antibiotic treatment history had limited utility in predicting SCV susceptibilities. With clinical correlation, this AST method and these results may prove useful in directing treatment for SCV infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.