Abstract

Barium titanate (BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition (PAD) technique. The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion. Crystal structures, surface morphologies, and dielectric performance were examined and compared for BTO thin films annealed under different temperatures. Correlations between the fabrication conditions, microstructures, and dielectric properties were discussed. BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with ∊r ∼ 400 and tan δ < 0.025 at 100 kHz. The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.