Abstract
Eukaryotic gene expression is orchestrated by a large number of regulatory steps to modulate the synthesis, maturation and fate of various families of protein-coding and non-coding RNA molecules. Defining the subcellular localization properties of an RNA molecule is thus of considerable importance for gleaning its function(s) and for elucidating post-transcriptional gene regulation pathways. For decades, fluorescent In Situ hybridization (FISH) has constituted the gold-standard technique for assessing RNA expression and distribution properties in cultured cells, tissue specimens, and whole mount organisms. Recently, several attempts aimed at advancing multiplex RNA-FISH experiments have been published. However, these procedures are both financially demanding and technically challenging, while their full potential remains unexploited. Here we describe an optimized RNA-FISH method employing the Tyramide Signal Amplification system that robustly enhances resolution and sensitivity needed for exploring RNA localization in Drosophila embryos, tissues and commonly cultured human and insect cell lines. Methodological details and key parameters are outlined for high-throughput analyses conducted in 96-well plate format.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.