Abstract
In this paper, an optimization variant of the shear strength reduction method is introduced and used for the solution of embankment stability problems with unconfined seepage. The optimization framework is based on approximations of non-associated Mohr–Coulomb plastic models with associated ones, especially by using various Davis’ approaches. Next, the finite element method is considered and mesh adaptive solution concepts are developed for both the unconfined seepage and stability problems. In-house codes in Matlab are used for their implementation. Finally, two numerical examples inspired by geotechnical practice are investigated in order to demonstrate the accuracy of the optimization framework and to evaluate three different Davis’ approaches. The results are compared with commercial codes in Plaxis and Comsol Multiphysics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.