Abstract

Thermal design is highly related to the performance of space cameras as temperature changes cause thermal displacements of the cameras’ optical and mechanical systems, consequently affecting imaging quality. However, most existing thermal design methods for space cameras focus on several thermal design parameters without a comprehensive and quantitative analysis. Therefore, we proposed an optimization thermal design method for space cameras based on thermo-optical analysis and the Taguchi method. We first established the thermal balance equations of space cameras, and by analyzing the thermal design parameters in the equations, we identified the key parameters that affect the temperature field, thermal displacements, and imaging quality of the camera. Furthermore, we evaluated the influence of each thermal design parameter on imaging quality based on the integrated thermo-optical analysis. Thereafter, we applied the Taguchi method to quantitatively calculate the effect of each thermal design parameter on imaging quality. Finally, we implemented an optimal thermal control scheme for space cameras based on the results of the Taguchi method. The experimental results demonstrated that the proposed method is reliable and efficient and would be beneficial to researchers working on the thermal design of optical instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.