Abstract

Abstract Compressive sensing is a processing approach aiming to reduce the data stream from the observed object with the inherent sparsity using the optimal signal models. The compression of the sparse input signal in time or in the transform domain is performed in the transmitter by the Analog to Information Converter (AIC). The recovery of the compressed signal using optimization based on the differential evolution algorithm is presented in the article as an alternative to the faster pseudoinverse algorithm. Pseudoinverse algorithm results in an unambiguous solution associated with lower compression efficiency. The selection of the mathematically appropriate signal model affects significantly the compression efficiency. On the other hand, the signal model influences the complexity of the algorithm in the receiving block. The suitability of both recovery methods is studied on examples of the signal compression from the passive infrared (PIR) motion sensors or the ECG bioelectric signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.