Abstract

The global interest in the use of plant by-product extracts as functional ingredients is continuously rising due to environmental, financial and health benefits. The latest advances in extraction technology have led to the production of aqueous extracts with high bioactive properties, which do not require the use of organic solvents. The purpose of this study was to optimize the conditions applied for the extraction of pomegranate peels (PP) via a “green” industrial type of vacuum microwave-assisted aqueous extraction (VMAAE), by assessing the potential bioactivity of the extracts (in terms of phenolic content and antioxidant activity), using a response surface methodology. The extraction conditions of temperature, microwave power, time and water/PP ratio were determined by the response surface methodology, in order to yield extracts with optimal total phenolics concentrations (TPC) and high antioxidant activity, based on the IC50 value of the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) radical. The values of the optimum extraction parameters, such as extraction temperature (61.48 and 79.158 °C), time (10 and 12.17 min), microwave power (3797.24 and 3576.47 W) and ratio of water to raw material (39.92% and 38.2%), were estimated statistically for the two responses (TPC and IC50 values), respectively. Under these optimal extraction conditions, PP extracts with high TPC ((5.542 mg Gallic Acid Equivalent (GAE)/g fresh PP))/min and radical scavenging activity (100 mg/L (1.6 L/min)) could be obtained. Our results highlighted that the optimized industrial type of VMAAE could be a promising solution for the valorization of the PP by-products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.