Abstract

Abstract The trench film cooling employs film holes embedded in a slot created on the surface that requires protection from the impact of hot mainstream flow. The present investigation employs Response Surface Methodology (RSM) approach coupled with CFD analysis to develop a regression predictive model and to optimize the trench geometric and flow parameters viz., trench width (w), trench depth (d), film hole compound angle (β) and blowing ratio (M). The Area-averaged film cooling effectiveness (ȠAA) were chosen as a response factor for RSM and with trench design and flow parameters used as input factors for regression analysis. Analysis of variance (ANOVA) analysis was carried out on the regression model to identify the influence of individual parameters. Three dimensional response surfaces that relate the effect of input parameters on the response factor were analyzed. Experimental results of a case identified from the RSM matrix was found to correlate well with computational investigations. Results from the study indicate that the parameters d, β and M have considerable impact on film cooling performance of test surface with trenches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.