Abstract
The paper aims to optimize the characteristic performances of friction stir welding of high-density polyethylene in order to predict failure modes in weld nugget and interfacial zones. Three replicates of a face central composite design are employed to estimate the effects of parameters process, on the transversal flow stress and strain of the seam and to understand root causes, which may lead to structural defects such as the onset of cracks and the seam-base metal rupture. The study findings disclose that maximum responses are obtained when the tool rotation speed is set middle and both the feed rate and the plunged surface are set high. The transversal flow stress of the welded seam is found highly sensitive to the plunged surfaces and at a lesser degree to the rotation speed, whereas, the transversal flow strain of the welded seam is mostly sensitive to the rotation speed and at a lesser degree to the plunged surfaces. For the microscopic analysis, it is shown that at low rotation speed, there exist four structural layers in the transition zone between the seam and the base material giving rise to the formation of a continuous line of cracks that can initiate structure failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.