Abstract
We developed a procedure for the optimization of thermal modes and parameters of the cooling system of induction traction engines of tram carriages. The procedure includes the following basic steps. The optimization of operating modes of an induction traction drive by the criterion of effectiveness of its work under different modes. The optimization of motion modes of a tram carriage along a track section with the assigned motion schedule and profile based on the curves of the motion of a tram carriage, optimal by the criterion of energy consumption, using the method of Hamilton-Jacobi-Bellman. The optimization of parameters of the cooling fan of traction engines by the criterion of efficiency of a cooling system using the Weyl method by the generalized golden section. It is proposed to conduct determining of operating modes of a traction drive in advance based on the solution to the problem of conditional optimization of its modes. In order to determine the optimal operating modes of a traction drive, we selected a combined method: global search is executed by genetic algorithm with a one-point crossover and by selection on the principle of roulette. At the final stage of an optimization procedure, optimum refining is carried out using the Nelder–Mead method. When a tram carriage moved along a track section, we defined the following. We determined the optimal modes of motion of the tram carriage T-3 VPA with induction traction engines for a track section with the assigned motion schedule. It was found that, compared with the basic design, efficiency of the cooling system increased by 27.6 %, which corresponds to a reduction in the proposed criterion of efficiency. Based on the results of modeling a traction engine with an optimal fan, it was established that the largest overheating is observed in the frontal part of the stator winding. The temperature is 139.6 °C at second 3363 from starting the motion and it does not exceed a permissible value of 140 °C.
Highlights
The processes of energy conversion in the traction engines of tram carriages are accompanied by its losses in the elements of design due to physical processes at energy conversion [1, 2]
Determining the efficiency of the link ATE–autonomous voltage inverter (AVI) is carried out based on the approaches proposed in papers [21], which include the following: to solve the problem on determining the optimal modes of a traction drive operation, it is necessary to solve four problems of the conditional optimization of parameters of a traction drive operation
Under other modes of traction drive operation, the criterion is determined by efficiency;
Summary
The processes of energy conversion in the traction engines of tram carriages are accompanied by its losses in the elements of design due to physical processes at energy conversion [1, 2]. Temperature of the elements of design of traction engines increases over the time of operation and can exceed permissible structural limits [2, 3]. This is especially true for temperature of the insulation of the motor windings, which is constrained by a class of the applied insulation [3, 4]. Cooling systems require additional expenses for their effective work, which, in turn, reduces engine efficiency, as well as of the electric rolling stock in general [9], and increase overall noise level [10]. – performing an analysis of results of the modeling of thermal modes of ATE operation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Eastern-European Journal of Enterprise Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.